Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
1.
Chem Commun (Camb) ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712724

ABSTRACT

A simple aqueous host:guest sensing array can selectively discriminate between different types of citrus varietal from peel extract samples. It can also distinguish between identical citrus samples at varying stages of ripening. The discrimination effects stem from detection of changes in the terpenoid composition of the peel extracts by the host:guest array, despite the overwhelming excess of a single component, limonene, in each sample. The hosts are insensitive to limonene but bind other monoterpenes strongly, even though they are similar in structure to the major limonene component. This work demonstrates the capability of host:guest arrays in sensing target molecules in environments with the competing agents present at high abundances in the sample matrix.

2.
Sci Adv ; 10(9): eadh8689, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38416840

ABSTRACT

Extracellular vesicles (EVs) play important roles in cell-cell communication but are highly heterogeneous, and each vesicle has dimensions smaller than 200 nm with very limited amounts of cargos encapsulated. The technique of NanOstirBar (NOB)-EnabLed Single Particle Analysis (NOBEL-SPA) reported in the present work permits rapid inspection of single EV with high confidence by confocal fluorescence microscopy, thus enables colocalization assessment for selected protein and microRNA (miRNA) markers in the EVs produced by various cell lines, or present in clinical sera samples. EV subpopulations marked by the colocalization of unique protein and miRNA combinations were discovered to be able to detect early-stage (stage I or II) breast cancer (BC). NOBEL-SPA can be adapted to analyze other types of cargo molecules or other small submicron biological particles. Study of the sorting of specific cargos to heterogeneous vesicles under different physiological conditions can help discover distinct vesicle subpopulations valuable in clinical examination and therapeutics development and gain better understanding of their biogenesis.


Subject(s)
Breast Neoplasms , Extracellular Vesicles , MicroRNAs , Humans , Female , MicroRNAs/genetics , MicroRNAs/metabolism , Extracellular Vesicles/metabolism , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Protein Transport , Cell Line
3.
Chem Sci ; 15(5): 1885-1893, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38303931

ABSTRACT

An indirect competitive binding mechanism can be exploited to allow a combination of cationic fluorophores and water-soluble synthetic receptors to selectively recognize and discriminate peptide strands containing a single isomeric residue in the backbone. Peptide isomerization occurs in long-lived proteins and has been linked with diseases such as Alzheimer's, cataracts and cancer, so isomers are valuable yet underexplored targets for selective recognition. Planar cationic fluorophores can selectively bind hydrophobic, Trp-containing peptide strands in solution, and when paired with receptors that provide a competitive host for the fluorophore, can form a differential sensing array that enables selective discrimination of peptide isomers. Residue variations such as D- and L-Asp, D- and L-isoAsp, D-Ser and D-Glu can all be recognized, simply by their effects on the folded structure of the flexible peptide. Molecular dynamics simulations were applied to determine the most favorable conformation of the peptide : fluorophore conjugate, indicating that favorable π-stacking with internal tryptophan residues in a folded binding pocket enables micromolar binding affinity.

4.
Anal Chem ; 95(42): 15778-15785, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37795969

ABSTRACT

Extracellular vesicles (EVs) play important roles in cell-cell communication and pathological development. Cargo profiling for the EVs present in clinical specimens can provide valuable insights into their functions and help discover effective EV-based markers for diagnostic and therapeutic purposes. However, the highly abundant and complex matrix components pose significant challenges for specific identification of low-abundance EV cargos. Herein, we combine asymmetrical flow field-flow fractionation (AF4) with large-volume sample stacking and capillary electrophoresis (LVSS/CE), to attain EVs with high purity for downstream protein profiling. This hyphenated system first separates the EVs from the contamination of smaller serum proteins by AF4, and second resolves the EVs from the coeluted, nonvesicular matrix components by CE following LVSS. The optimal LVSS condition permits the injection of 10-fold more EVs into CE compared to the nonstacking condition without compromising separation resolution. Collection and downstream analysis of the highly pure EVs after CE separation were demonstrated in the present work. The high EV purity yields a much-improved labeling efficiency when detected by fluorescent antibodies compared to those collected from the one-dimension separation of AF4, and permits the identification of more EV-specific cargos by LC-MS/MS compared to those isolated by ultracentrifugation (UC), the exoEasy Maxi Kit, and AF4. Our results strongly support that AF4-LVSS/CE can improve EV isolation and cargo analysis, opening up new opportunities for understanding EV functions and their applications in the biomedical fields.


Subject(s)
Extracellular Vesicles , Tandem Mass Spectrometry , Chromatography, Liquid/methods , Extracellular Vesicles/metabolism , Ultracentrifugation , Blood Proteins/metabolism
5.
ACS Sens ; 8(10): 3914-3922, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37737572

ABSTRACT

The misuse of cannabinoids and their synthetic variants poses significant threats to public health, necessitating the development of advanced techniques for detection of these compounds in biological or environmental samples. Existing methods face challenges like lengthy sample pretreatment and laborious antifouling steps. Herein, we present a novel sensing platform using magnetic nanorods coated with zwitterionic polymers for the simple, rapid, and sensitive detection of cannabinoids in biofluids. Our technique utilizes the engineered derivatives of the plant hormone receptor Pyrabactin Resistance 1 (PYR1) as drug recognition elements and employs the chemical-induced dimerization (CID) mechanism for signal development. Additionally, the magnetic nanorods facilitate efficient target capture and reduce the assay duration. Moreover, the zwitterionic polymer coating exhibits excellent antifouling capability, preserving excellent sensor performance in complex biofluids. Our sensors detect cannabinoids in undiluted biofluids like serum, saliva, and urine with a low limit of detection (0.002 pM in saliva and few pM in urine and serum) and dynamic ranges spanning up to 9 orders of magnitude. Moreover, the PYR1 derivatives demonstrate high specificity even in the presence of multiple interfering compounds. This work opens new opportunities for sensor development, showcasing the excellent performance of antifouling magnetic nanorods that can be compatible with different recognition units, including receptors and antibodies, for detecting a variety of targets.


Subject(s)
Biofouling , Cannabinoids , Plant Growth Regulators , Biofouling/prevention & control , Polymers , Magnetic Phenomena
6.
Environ Sci Technol ; 57(39): 14493-14501, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37726893

ABSTRACT

Escalating the production and application of tungsten disulfide (WS2) nanosheets inevitably increases environmental human exposure and warrants the necessity of studies to elucidate their biological impacts. Herein, we assessed the toxicity of WS2 nanosheets and focused on the impacts of low doses (≤10 µg/mL) on normal (BEAS-2B) and tumorigenic (A549) lung epithelial cells. The low doses, which approximate real-world exposures, were found to induce cell apoptosis, while doses ≥ 50 µg/mL cause necrosis. Focused studies on low-dose exposure to WS2 nanosheets revealed more details of the impacts on both cell lines, including reduction of cell metabolic activity, induction of lipid peroxidation in cell membranes, and uncoupling of mitochondrial oxidative phosphorylation that led to the loss of ATP production. These phenomena, along with the expression situations of a few key proteins involved in apoptosis, point toward the occurrence of mitochondria-dependent apoptotic signaling in exposed cells. Substantial differences in responses to WS2 exposure between normal and tumorigenic lung epithelial cells were noticed as well. Specifically, BEAS-2B cells experienced more adverse effects and took up more nanosheets than A549 cells. Our results highlight the importance of dose and cell model selection in the assessment of nanotoxicity. By using doses consistent with real-world exposures and comparing normal and diseased cells, we can gain knowledge to guide the development of safety precautions for mitigating the adverse impacts of nanomaterial exposure on human health.

7.
ACS Sens ; 8(8): 3195-3204, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37477362

ABSTRACT

Flexible, water-soluble hosts are capable of selective molecular recognition in cellular environments and can detect neurotransmitters such as choline in cells. Both cationic and anionic water-soluble self-folded deep cavitands can recognize suitable styrylpyridinium dyes in cellular interiors. The dyes selectively accumulate in nucleotide-rich regions of the cell nucleus and cytoplasm. The hosts bind the dyes and promote their relocation to the outer cell membrane: the lipophilic cavitands predominantly reside in membrane environments but are still capable of binding suitable targets in other cellular organelles. Incubating the cells with structurally similar biomarkers such as choline, cholamine, betaine, or butyrylcholine illustrates the selective recognition. Choline and butyrylcholine can be bound by the hosts, but minimal binding is seen with betaine or cholamine. Varying the dye allows control of the optical detection method, and both "turn-on" sensing and "turn-off" sensing are possible.


Subject(s)
Betaine , Choline , Choline/metabolism , Coloring Agents , Water/chemistry , Neurotransmitter Agents
8.
Chem Commun (Camb) ; 59(50): 7819-7822, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37272374

ABSTRACT

Water-soluble deep cavitands with cationic functions at the lower rim can selectively bind iodide anions in purely aqueous solution. By pairing this lower rim recognition with an indicator dye that is bound in the host cavity, optical sensing of anions is possible. The selectivity for iodide is high enough that micromolar concentrations of iodide can be detected in the presence of molar chloride. Iodide binding at the "remote" lower rim causes a conformational change in the host, displacing the bound dye from the cavity and effecting a fluorescence response. The sensing is sensitive, selective, and works in complex environments, so will be important for optical anion detection in biorelevant media.

9.
bioRxiv ; 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37131582

ABSTRACT

Extracellular vesicles (EVs) play important roles in cell-cell communication but they are highly heterogeneous, and each vesicle has dimensions smaller than 200 nm thus encapsulates very limited amounts of cargos. We report the technique of NanOstirBar (NOB)-EnabLed Single Particle Analysis (NOBEL-SPA) that utilizes NOBs, which are superparamagnetic nanorods easily handled by a magnet or a rotating magnetic field, to act as isolated "islands" for EV immobilization and cargo confinement. NOBEL-SPA permits rapid inspection of single EV with high confidence by confocal fluorescence microscopy, and can assess the colocalization of selected protein/microRNA (miRNA) pairs in the EVs produced by various cell lines or present in clinical sera samples. Specific EV sub-populations marked by the colocalization of unique protein and miRNA combinations have been revealed by the present work, which can differentiate the EVs by their cells or origin, as well as to detect early-stage breast cancer (BC). We believe NOBEL-SPA can be expanded to analyze the co-localization of other types of cargo molecules, and will be a powerful tool to study EV cargo loading and functions under different physiological conditions, and help discover distinct EV subgroups valuable in clinical examination and therapeutics development.

10.
ACS Sens ; 8(4): 1658-1666, 2023 04 28.
Article in English | MEDLINE | ID: mdl-36945081

ABSTRACT

Metal-Organic Frameworks (MOFs) can deliver many advantages when acting as enzyme mimics to assist with signal amplification in molecular detection: they have abundant active catalytic sites per unit volume of the material; their structures and elemental compositions are highly tunable, and their high specific surface area and porous property can assist with target separation and enrichment. In the present work, we have demonstrated that, by adding the pore partition agent, 2,4,6-tris(4-pyridyl)pyridine (TPY) during synthesis of the bimetallic Fe/Co-MIL-88(NH2) MOF to block the open metal sites, a highly porous MOF of Fe/Co-TPY-MIL-88(NH2) can be produced. This material also exhibits high stability in basic solutions and biofluids and possesses high peroxidase-mimicking activity, which can be utilized to produce long-lasting chemiluminescence (CL) from luminol and H2O2. Moreover, acting as the peroxidase-mimic, the Fe/Co-TPY-MIL-88(NH2) MOF can form the enzymatic cascade with glucose oxidase (GOx) for biomarker detection. When applied to detect extracellular vesicles (EVs), the MOF material and GOx are brought to the proximity on the EVs through two surface proteins, which triggers the enzyme cascade to produce high CL from glucose and luminol. EVs within the concentration range of 5 × 105 to 4 × 107 particles/mL can be detected with an LOD of 1 × 105 particles/mL, and the method can be used to analyze EV contents in human serum without sample preparation and EV purification. Overall, our work demonstrates that the high versatility and tunability of the MOF structures could bring in significant benefits to biosensing and enable ultrasensitive detection of biomarkers with judicious material designs.


Subject(s)
Extracellular Vesicles , Metal-Organic Frameworks , Humans , Metal-Organic Frameworks/chemistry , Luminescence , Luminol/chemistry , Hydrogen Peroxide/chemistry , Peroxidases/metabolism , Peroxidase , Glucose Oxidase/chemistry , Extracellular Vesicles/metabolism
11.
Anal Bioanal Chem ; 415(7): 1235-1238, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36740632
12.
Anal Chem ; 94(41): 14083-14091, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36191238

ABSTRACT

Extracellular vesicles (EVs) play important roles in cell-to-cell communications and carry high potential as markers targeted in disease diagnosis, prognosis, and therapeutic development. The main obstacles to EV study are their high heterogeneity; low amounts present in samples; and physical similarity to the abundant, interfering matrix components. Multiple rounds of separation and purification are often needed prior to EV characterization and function assessment. Herein, we report the offline coupling of asymmetrical flow field-flow fractionation (AF4) and capillary electrophoresis (CE) for EV analysis. While AF4 provides gentle and fast EV separation by size, CE resolves EVs from contaminants with similar sizes but different surface charges. Employing Western Blotting, ELISA, and SEM, we confirmed that intact EVs were eluted within a stable time window under the optimal AF4 and CE conditions. We also proved that EVs could be resolved from free proteins and high-density lipoproteins by AF4 and be further separated from the low-density lipoproteins co-eluted in AF4. The effectiveness of the coupled AF4-CE system in EV analysis was demonstrated by monitoring the changes in EV secretion from cells and by direct injection of human serum and detection of serum EVs. We believe that coupling AF4 and CE can provide rapid EV quantification in biological samples with much reduced matrix interference and be valuable for the study of total EVs and EV subpopulations produced by cells or present in clinical samples.


Subject(s)
Extracellular Vesicles , Fractionation, Field Flow , Electrophoresis, Capillary/methods , Fractionation, Field Flow/methods , Humans , Lipoproteins, HDL , Lipoproteins, LDL
13.
ACS Appl Mater Interfaces ; 14(37): 41800-41808, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36083615

ABSTRACT

Metal-organic frameworks (MOFs) have many attractive features, including tunable composition, rigid structure, controllable pore size, and large specific surface area, and thus are highly applicable in molecular analysis. Depending on the MOF structure, a high number of unsaturated metal sites can be exposed to catalyze chemical reactions. In the present work, we report that using both Co(II) and Fe(III) to prepare the MIL-88(NH2) MOF, we can produce the bimetallic MOF that can catalyze the conversion of 3,3',5,5″-tetramethylbenzidine (TMB) to a color product through a reaction with H2O2 at a higher reaction rate than the monometallic Fe-MIL-88(NH2). The Michaelis constants (Km) of the catalytic reaction for TMB and H2O2 are 3-5 times smaller, and the catalytic constants (kcat) are 5-10 times higher than those of the horseradish peroxidase (HRP), supporting ultrahigh peroxidase-like activity. These values are also much more superior to those of the HRP-mimicking MOFs reported previously. Interestingly, the bimetallic MOF can be coupled with glucose oxidase (GOx) to trigger the cascade enzymatic reaction for highly sensitive detection of extracellular vesicles (EVs), a family of important biomarkers. Through conjugation to the aptamer that recognizes the marker protein on EV surface, the MOF can help isolate the EVs from biological matrices, which are subsequently labeled by GOx via antibody recognition. The cascade enzymatic reaction between MOF and GOx enables the detection of EVs at a concentration as low as 7.8 × 104 particles/mL. The assay can be applied to monitor EV secretion by cultured cells and also can successfully detect the different EV quantities in the sera samples collected from cancer patients and healthy controls. Overall, we prove that the bimetallic Fe/Co-MIL-88(NH2) MOF, with its high peroxidase activity and high biocompatibility, is a valuable tool deployable in clinical assays to facilitate disease diagnosis and prognosis.


Subject(s)
Extracellular Vesicles , Metal-Organic Frameworks , Benzidines , Colorimetry , Coloring Agents/chemistry , Extracellular Vesicles/chemistry , Ferric Compounds , Glucose Oxidase/metabolism , Horseradish Peroxidase , Hydrogen Peroxide/chemistry , Metal-Organic Frameworks/chemistry , Peroxidase/chemistry , Peroxidases/chemistry
14.
Environ Sci Technol ; 56(17): 12288-12297, 2022 09 06.
Article in English | MEDLINE | ID: mdl-35973094

ABSTRACT

Despite mounting evidence of micro-nanoplastics (MNPs) in food and drinking water, little is known of the potential health risks of ingested MNPs, and nothing is known of their potential impact on nutrient digestion and absorption. We assessed the effects of environmentally relevant secondary MNPs generated by incineration of polyethylene (PE-I), on digestion and absorption of fat in a high fat food model using a 3-phase in vitro simulated digestion coupled with a tri-culture small intestinal epithelium model. The presence of 400 µg/mL PE-I increased fat digestion by 33% and increased fat absorption by 147 and 145% 1 and 2 h after exposure. Analysis of the PE-I lipid corona during digestion revealed predominantly triacylglycerols with enrichment of fatty acids in the small intestinal phase. Protein corona analysis showed enrichment of triacylglycerol lipase and depletion of ß-casein in the small intestinal phase. These findings suggest digestion of triacylglycerol by lipase on the surface of lipid-coated MNPs as a potential mechanism. Further studies are needed to investigate the mechanisms underlying the greater observed increase in fat absorption, to verify these results in an animal model, and to determine the MNP properties governing their effects on lipid digestion and absorption.


Subject(s)
Lipolysis , Microplastics , Animals , Digestion , Incineration , Intestinal Absorption , Intestinal Mucosa/metabolism , Lipase/metabolism , Polyethylene/metabolism , Triglycerides/metabolism
15.
ACS Sens ; 7(8): 2164-2169, 2022 08 26.
Article in English | MEDLINE | ID: mdl-35917160

ABSTRACT

An arrayed host:guest fluorescence sensor system can discriminate DNA G-quadruplex structures that differ only in the presence of single oxidation or methylation modification in the guanine base. These small modifications make subtle changes to G4 folding that are often not detectable by CD but induce differential fluorescence responses in the array. The sensing is functional in diluted serum and is capable of distinguishing individual modifications in DNA mixtures, providing a powerful method of detecting folding changes caused by DNA damage.


Subject(s)
G-Quadruplexes , DNA/chemistry , Fluorescence , Guanine/chemistry , Oxidation-Reduction
16.
Nat Biotechnol ; 40(12): 1855-1861, 2022 12.
Article in English | MEDLINE | ID: mdl-35726092

ABSTRACT

A general method to generate biosensors for user-defined molecules could provide detection tools for a wide range of biological applications. Here, we describe an approach for the rapid engineering of biosensors using PYR1 (Pyrabactin Resistance 1), a plant abscisic acid (ABA) receptor with a malleable ligand-binding pocket and a requirement for ligand-induced heterodimerization, which facilitates the construction of sense-response functions. We applied this platform to evolve 21 sensors with nanomolar to micromolar sensitivities for a range of small molecules, including structurally diverse natural and synthetic cannabinoids and several organophosphates. X-ray crystallography analysis revealed the mechanistic basis for new ligand recognition by an evolved cannabinoid receptor. We demonstrate that PYR1-derived receptors are readily ported to various ligand-responsive outputs, including enzyme-linked immunosorbent assay (ELISA)-like assays, luminescence by protein-fragment complementation and transcriptional circuits, all with picomolar to nanomolar sensitivity. PYR1 provides a scaffold for rapidly evolving new biosensors for diverse sense-response applications.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Biosensing Techniques , Plant Growth Regulators , Arabidopsis Proteins/genetics , Ligands , Plants
17.
Chem Res Toxicol ; 35(7): 1244-1256, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35706338

ABSTRACT

Applications of reduced graphene oxide (rGO) in many different areas have been gradually increasing owing to its unique physicochemical characteristics, demanding more understanding of their biological impacts. Herein, we assessed the toxicological effects of rGO in mammary epithelial cells. Because the as-synthesized rGO was dissolved in sodium cholate to maintain a stable aqueous dispersion, we hypothesize that changing the cholate concentration in the dispersion may alter the surface property of rGO and subsequently affect its cellular toxicity. Thus, four types of rGO were prepared and compared: rGO dispersed in 4 and 2 mg/mL sodium cholate, labeled as rGO and concentrated-rGO (c-rGO), respectively, and rGO and c-rGO coated with a protein corona through 1 h incubation in culture media, correspondingly named pro-rGO and pro-c-rGO. Notably, c-rGO and pro-c-rGO exhibited higher toxicity than rGO and pro-rGO and also caused higher reactive oxygen species production, more lipid membrane peroxidation, and more significant disruption of mitochondrial-based ATP synthesis. In all toxicological assessments, pro-c-rGO induced more severe adverse impacts than c-rGO. Further examination of the material surface, protein adsorption, and cellular uptake showed that the surface of c-rGO was coated with a lower content of surfactant and adsorbed more proteins, which may result in the higher cellular uptake observed with pro-c-rGO than pro-rGO. Several proteins involved in cellular redox mediation were also more enriched in pro-c-rGO. These results support the strong correlation between dispersant coating and corona formation and their subsequent cellular impacts. Future studies in this direction could reveal a deeper understanding of the correlation and the specific cellular pathways involved and help gain knowledge on how the toxicity of rGO could be modulated through surface modification, guiding the sustainable applications of rGO.


Subject(s)
Graphite , Protein Corona , Graphite/chemistry , Reactive Oxygen Species/metabolism , Sodium Cholate
18.
Nat Cell Biol ; 24(6): 954-967, 2022 06.
Article in English | MEDLINE | ID: mdl-35637408

ABSTRACT

Epidemiological studies demonstrate an association between breast cancer (BC) and systemic dysregulation of glucose metabolism. However, how BC influences glucose homeostasis remains unknown. We show that BC-derived extracellular vesicles (EVs) suppress pancreatic insulin secretion to impair glucose homeostasis. EV-encapsulated miR-122 targets PKM in ß-cells to suppress glycolysis and ATP-dependent insulin exocytosis. Mice receiving high-miR-122 EVs or bearing BC tumours exhibit suppressed insulin secretion, enhanced endogenous glucose production, impaired glucose tolerance and fasting hyperglycaemia. These effects contribute to tumour growth and are abolished by inhibiting EV secretion or miR-122, restoring PKM in ß-cells or supplementing insulin. Compared with non-cancer controls, patients with BC have higher levels of circulating EV-encapsulated miR-122 and fasting glucose concentrations but lower fasting insulin; miR-122 levels are positively associated with glucose and negatively associated with insulin. Therefore, EV-mediated impairment of whole-body glycaemic control may contribute to tumour progression and incidence of type 2 diabetes in some patients with BC.


Subject(s)
Breast Neoplasms , Diabetes Mellitus, Type 2 , Extracellular Vesicles , MicroRNAs , Animals , Breast Neoplasms/pathology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Extracellular Vesicles/metabolism , Female , Glucose/metabolism , Homeostasis , Humans , Insulin/metabolism , Insulin Secretion , Mice , MicroRNAs/genetics , MicroRNAs/metabolism
19.
Bioconjug Chem ; 33(12): 2245-2253, 2022 12 21.
Article in English | MEDLINE | ID: mdl-35362963

ABSTRACT

Synthetic receptors are powerful tools for molecular recognition. They can bind to guests with high selectivity and affinity, and their structures are tunable and diversified. These features, plus the relatively low cost and high simplicity in synthesis and modification, support the feasibility of array-based molecular analysis with synthetic receptors for improved selectivity in the recognition of a wide range of targets. More attractively, host-guest interaction is reversible and guest displacement allows biocompatible and gentle release of the host-bound molecules, simplifying the stimulation designs needed to control analyte sensing, enrichment, and transportation. Here, we highlight a few recent advancements in using synthetic receptors for molecular analysis and manipulation, with the focus on macrocyclic receptors and their applications in displacement sensing, separation, imaging, and drug transport.


Subject(s)
Receptors, Artificial , Drug Delivery Systems
20.
Acc Chem Res ; 55(7): 1035-1046, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35302733

ABSTRACT

Simple macrocyclic water-soluble hosts such as cucurbiturils, cyclophanes, and calixarenes have long been used for biosensing via indicator displacement assays. Using multiple hosts and dyes in an arrayed format allows pattern recognition-based "chemical nose" sensing, which confers exquisite selectivity, even rivaling the abilities of biological recognition tools such as antibodies. However, a challenge in indicator displacement-based biosensing with macrocyclic hosts is that selectivity and scope are often inversely correlated: strong selectivity for a specific target can limit wide application, and broad scope sensing can suffer from a lack of selectivity between similar targets. This problem can be addressed by using water-soluble, self-folding deep cavitands as hosts. These flexible bowl-shaped receptors can be easily functionalized with different motifs at the upper and lower rim, and the large cavities can bind many different fluorescent dyes, causing either fluorescence enhancement or quenching upon binding.Cavity-based affinity is strongest for NMe3+ groups such as trimethyl-lysine, and we have exploited this for the site-selective recognition of post-translational lysine methylations in oligopeptides. The host recognizes the NMe3+ group, and by applying differently functionalized hosts in an arrayed format, discrimination between identical modifications at different positions on the oligopeptide is possible. Multiple recognition elements can be exploited for selectivity, including a defined, yet "breathable" cavity, and variable upper rim functions oriented toward the target.While the performance of the host/guest sensing system is impressive for lysine methylations, the most important advance is the use of multiple different sensing mechanisms that can target a broad range of different biorelevant species. The amphiphilic deep cavitands can both bind fluorescent dyes and interact with charged biomolecules. These non-cavity-based interactions, when paired with additives such as heavy metal ions, modulate fluorescence response in an indirect manner, and these different mechanisms allow selective recognition of serine phosphorylation, lysine acetylation, and arginine citrullination. Other targets include heavy metals, drugs of abuse, and protein isoforms. Furthermore, the hosts can be applied in supramolecular tandem assays of enzyme function: the broad scope allows analysis of such different enzymes as chromatin writers/erasers, kinases, and phosphatases, all from a single host scaffold. Finally, the indirect sensing concept allows application in sensing different oligonucleotide secondary structures, including G-quadruplexes, hairpins, triplexes, and i-motifs. Discrimination between DNA strands with highly similar structures such as G-quadruplex strands with bulges and vacancies can be achieved. Instead of relying on a single highly specific fluorescent probe, the synthetic hosts tune the fluorophore-DNA interaction, introducing multiple recognition equilibria that modulate the fluorescence signal. By applying machine learning algorithms, a classification model can be established that can accurately predict the folding state of unknown sequences. Overall, the unique recognition profile of self-folded deep cavitands provides a powerful, yet simple sensing platform, one that can be easily tuned for a wide scope of biorelevant targets, in complex biological media, without sacrificing selectivity in the recognition.


Subject(s)
Ethers, Cyclic , G-Quadruplexes , Fluorescent Dyes/chemistry , Resorcinols
SELECTION OF CITATIONS
SEARCH DETAIL
...